BIOLOGIA Y SALUD MENTAL

Tratado multidisciplinar: Actividad cerebral, Procesos mentales superirores. Comportamiento

Pin it

Primera etapa: regulación de la síntesis del neurotransmisor. 

Un botón terminal en equilibrio mantiene una polarización de su membrana y una regulación de su capacidad de síntesis del neurotransmisor o de las proteínas asociadas a la consolidación de las vesículas sinápticas, de acuerdo con las exigencias funcionales de la neurona y de su propio control metabólico sobre la disponibilidad de neurotransmisor.

Asumiendo esta condición, la conducción de un impulso nervioso, que rompe el esfuerzo fisiológico para el mantenimiento de la polarización, produce una significativa movilización de las vesículas sinápticas que almacenan neurotransmisores, los cuales llegan a unirse a la propia membrana plasmática; y la entrada de Ca++, como consecuencia de la despolarización, que abre los canales de Ca++, rompe la anastomosis vesícula-membrana y libera al espacio sináptico el neurotransmisor. El aumento de la superficie de membrana que supone la ruptura de las vesículas sinápticas, es posteriormente restaurado por la pinocitosis interna, es decir, el desprendimiento interno de estas membranas que van a ser, desde luego, precursoras para la formación de nuevas vesículas sinápticas. Asimismo, el Ca++ que ha intervenido en el proceso es transportado extracelularmente por las proteínas transportadoras de Ca++ similares a la bomba de sodio-potasio, con lo que se vuelve al equilibrio en la neurona presináptica.

Segunda etapa: liberación del neurotransmisor.

Una vez que el neurotransmisor ha sido liberado al espacio sináptico, se difunde por el mismo y puede seguir las siguientes rutas:

Recaptación de neurotransmisores
Figura 7: Recaptación de neurotransmisores. Tomado de Siegel, G. J (ed.):

  • Fijación en los lugares específicos de membrana tanto presináptica como postsináptica, que son los receptores.
  • Dispersión en el espacio sináptico y actuación fuera de la sinapsis como un neuromodulador.
  • Recaptación presináptica del neurotransmisor.
  • Catabolización enzimática del neurotransmisor y por tanto degradación de la estructura.

Tercera etapa: activación de receptores.

Receptores postsinápticos

Las estructuras de unión del neurotransmisor en la membrana postsináptica son proteínas específicas de membrana que constituyen los receptores postsinápticos y que son la clave del reconocimiento de la liberación de neurotransmisores presinápticos. Es decir, los receptores postsinápticos son la estructura básica para interpretar la comunicación interneuronal, constituyen, por tanto, auténticas estructuras de diferenciación neuronal a la vez que son un claro exponente de la diversidad específica.

La afinidad del neurotransmisor como ligando por el receptor postsináptico es una característica inherente a la diferenciación y especialización de las propias neuronas, hasta tal punto que un neurotransmisor determinado no produce efectos, por muy constante e intensa que sea su liberación, si la membrana postsináptica no contiene en su diferenciación los receptores específicos para ese neurotransmisor concreto.

Una vez que el receptor potsináptico y neurotransmisor se unen, aparece inmediatamente una consecuencia en la membrana postsináptica. Indudablemente, hay una alteración constitucional que puede ser suficiente para modificar los canales iónicos de polarización de esa membrana, generando rápidamente una despolarización o una hiperpolarización, lo que conllevaría un aumento de la activación o inhibición, respectivamente, de la membrana postsináptica.

Normalmente, la activación de los receptores postsinápticos por un neurotransmisor ejerce su efecto, es decir, es interpretada postsinápticamente, mediante la utilización de un neuromediador o de un segundo mensajero. En el primer caso, lo que ocurre es que la acción neurotransmisor-receptor es indirecta y necesita de una proteína de membrana mediadora ante la modificación de su permeabilidad iónica, o lo que es lo mismo, hacia la alteración de su polarización. En el segundo caso, bien por la neuromediación, bien por el complejo específico neurotransmisor-receptor, se activa un sistema enzimático de membrana, normalmente la adenilato-ciclasa, cuya actuación inmediata se realiza sobre el adenosín trifosfato (ATP) que se transforma en adenosín monofosfato cíclico (AMPc). El AMPc no sólo activa la apertura de los canales iónicos sino que también conduce la información de la actividad de membrana de la que procede, hacia las estructuras somáticas y nucleares de la neurona, por lo que las consecuencias de una comunicación interneuronal pueden perfectamente trascender a mecanismos bioquímicos que impliquen cambios estructurales y/o funcionales a partir de la utilización del segundo mensajero.

Al igual que ocurría en la segunda etapa, es decir, la dependencia del Ca++ en la liberación del neurotransmisor, todavía aquí nos encontramos con una incuestionable dependencia del Ca++ que es tanto más acusada cuanto mayor es la repercusión metabólica del AMPc.

Liberación y metabolismo de purinas
Figura 8: Liberación y metabolismo de purinas. Tomado de Siegel, G. J.; (ed.):

Como resultado final de esta etapa, lo que ocurre localmente es una movilización de los canales iónicos que afectan al Na+, K+, Cl- y Ca++. Como sabemos, la polarización de la membrana establece particularmente unas concentraciones de Na+ extracelular y de K+ intracelular. Si se abre el canal de Na+, aparece una única entrada que genera automáticamente una despolarización, es decir crea un potencial postsináptico excitador. Si lo que se activa es el canal de K+, se establece una acumulación excesiva de K+ intracelular cuya consecuencia es la contraria, es decir, una hiperpolarización de la membrana y por tanto un potencial postsináptico inhibidor. La acción sobre el canal de Cl- tiene efecto cuando la membrana está ligeramente despolarizada, en cuyo caso la apertura de este canal se opone a la aparición de un potencial postsináptico excitador. Cuando la membrana está polarizada, cuyo resultado final es una clara electronegatividad intracelular, la apertura de un canal de Cl- no tiene mayor repercusión al reafirmar la electronegatividad, y además es rápidamente reequilibrada por difusión.

Por su parte los iones Ca++ situados extracelularmente actúan igual que los iones Na+; es decir, despolarizan la membrana y producen potenciales postsinápticos excitatorios, además de ser un potente activador enzimático.

Receptores presinápticos o autorreceptores

Es también enormemente transcendente la activación de los receptores específicos de membrana, situados en la neurona presináptica, que responden a la liberación del neurotransmisor con la misma eficacia y afinidad que los receptores postsinápticos. Ahora bien, el resultado de este mecanismo es un servomecanismo, es decir, la autorregulación de la liberación del neurotransmisor con el fin de que la comunicación neuronal sea eficaz, ajustada y esté adecuada a los niveles de excitabilidad que han provocado los potenciales de acción en los botones terminales. Estos receptores, a diferencia de los postsinápticos, no controlan canales iónicos. Sin embargo, sí que regulan la movilización de las vesículas, intervienen esencialmente en la disponibilidad del neurotransmisor y, por tanto, en su síntesis y en su liberación. Normalmente, su control es por retroalimentación y su activación favorece los mecanismos de inhibición presináptica que, lógicamente, se asientan en el funcionamiento de los segundos mensajeros.

Cuarta etapa: inactivación del neurotransmisor

Una vez cumplido el objetivo sináptico, es decir la comunicación a la neurona postsináptica, se produce la inactivación del neurotransmisor. El mecanismo de inactivación más importante es la recaptación presináptica, que se produce no por la utilización de receptores específicos para su fijación, sino por auténticos transportadores de membrana que vuelven a incorporarlos al espacio presináptico. Estos transportadores de membrana actúan bien sobre el neurotransmisor íntegramente liberado y reconocido por sus receptores o bien sobre metabolitos intermediarios fruto de la acción catabólica de sistemas enzimáticos postsinápticos. Indudablemente, la recaptación o la degradación catabólica del neurotransmisor termina con la activación de los receptores de membrana y desde luego termina con la actividad de los neurotransmisores.

Quinta etapa: difusión del neurotransmisor.

La ultima etapa que podemos definir en la sinapsis es la difusión del neurotransmisor. Esto nos permite incluir el concepto de neuromodulador, que produce sus efectos a grandes distancias del lugar de secreción, y que afecta a grupos neuronales y otras áreas de intervención. Este concepto es fundamental en la secreción de neuropéptidos más que de neurotransmisores clásicos, y aunque los propios neuropéptidos de secreción sináptica pueden actuar como auténticos neurotransmisores, la propia estructura de la molécula favorece su difusión y alejamiento de su actuación local, por lo que pueden ser considerados como neuromoduladores.

La naturaleza de la materia transmisora no es en realidad quien define el efecto postsináptico de la neurotransmisión, sino que es la naturaleza de los canales iónicos controlados por los receptores de membrana postsinápticos la que define el efecto excitatorio o inhibitorio; de ahí que podamos encontrarnos con efectos claramente inhibitorios de un determinado neurotransmisor que en su generalidad es excitatorio.

 

 

Escribir un comentario

Su comentario puede tardar más de una hora en aparecer. Para reducir la carga a este sitio Web, los comentarios están almacenados en disco duro y tarda tiempo en regenerarse con contenido nuevo.


Logo del ministerio de ciencia Este proyecto ha sido subvencionado parcialmente por el Ministerio de Ciencia y Tecnología, Programa de Fomento de la Investigación Técnica del Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica.Dirección técnica y desarrollo: CMP Centro de Microinformática y Programación SRL

Novedad

Modelo bidireccional y triestratificado

Autor: Profesor G. Gómez-Jarabo
Director de biopsicologia.net


Desarrollo técnico: CMP Centro de Microinformática y Programación SRL

Dirección técnica: Emilio Garijo Soler

¡Atención! Este sitio usa cookies y tecnologías similares.

Si no cambia la configuración de su navegador, usted acepta su uso. Saber más

Acepto
Cache hits : 9 [90%]
Cache misses : 1 [10%]
Cache total : 10
Url added to cache : 2066



Misses list
index.php?option=com_search&lang=es&searchword=

In memory, waiting to be written : 0
Ram used : 795944